

    
      
          
            
  
Welcome to Phase’s documentation!



	Getting started
	Introduction

	Installation

	Contributing

	Available fabric commands





	Basic usage
	Users Group





	Customizing document models
	Document model definition

	Required fields and methods

	Document unique identifier

	Document list columns

	Search and filter form

	Import fields





	Customizing reports
	Company logo

	Report templates





	Phase deployment
	Hosting Phase on a dedicated server

	LXC configuration

	Server installation

	NodeJS installation

	Memcache installation

	Database creation

	Python configuration

	Elasticsearch configuration

	Phase installation

	Web server configuration

	Running the application

	Troubleshooting





	Development and test
	Installation

	Configuration





	Management tasks and cronjobs
	Reindex all

	Clear private media

	Exports cleanup

	Crontab





	Transmittals upload
	Directory definition

	Server configuration





	Audit trail
	Actions logged

	For admins

	For other users





	Django administration
	Reports

	Contractors and outgoing transmittals





	Colophon








          

      

      

    

  

    
      
          
            
  
Getting started


Introduction

Phase is a document management system specifically designed for the needs of engineering and construction projects to manage the documentation of oil & gas, water treatment, nuclear, solar and wind facilities.

Phase offers the following characteristics:


	Management of document and data lists containing thousands of items


	Management of multiple metadata related to engineering, review, schedule, etc.


	Spreadsheet like filtering/search capabilities


	Document and data versioning


	Management of relationships between documents and data




Phase is intended to be used on projects where:


	Thousands of documents are generated


	Documents have to be produced, exchanged, reviewed, revised and used all along the project phases by multiple parties (owner/operator, contractors, vendors, partners, authorities, etc.)






Installation

Check the deployment doc to see how to properly install Phase on a local
machine.



Contributing

To make Phase work on a local environment, you must have the following
processes running:



	Phase (django runserver)


	Celery (run locally with DJANGO_SETTINGS_MODULE=core.settings.local celery -A
core.celery worker -l info)


	RabbitMQ


	Postgres


	Elasticsearch


	Memcached









Available fabric commands

A fabric script is available to run custom commands. Check fabfile.py to have
an up to date list.





          

      

      

    

  

    
      
          
            
  
Basic usage

TODO : Define phase usage


	Category creation


	Category templates





Users Group

Users groups can be defined in django admin interface.
Permissions must be assigned to control available actions.
The permissions used in Phase are: documents.add_document,
documents.can_control_document, documents.can_start_stop_review, and
transmittals.add_outgoing_transmittal for transmittal generation.





          

      

      

    

  

    
      
          
            
  
Customizing document models

Phase comes with predefined document models. However, it is designed so you can create your own.

All you need to do is to create a new application with a name ending by “_documents”:

mkdir myproject_app
cd myproject_app
django-admin.py startapp myproject_documents





You need to make sure that this application is accessible in the PYTHONPATH. If you use virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/], you can use add2virtualenv:

add2virtualenv myproject_app





Once this is done, add your application in the core/settings/doc_apps.py file
and run migrate.

Sample doc_apps.py:

# -*- coding: utf-8 -*-
from __future__ import unicode_literals

DOC_APPS = (
    'epc2_documents',
    'sileo_documents',
)





This file is listed in .gitignore and must not be commited.


Document model definition

Every document model is made of two classes: a base metadata class and a revision class. The base class must inherit of documents.models.Metadata and the revision class must inherit of documents.models.MetadataRevision.

Check the default_documents.models package for an up to date working example.



Required fields and methods

On the metadata base class, you must define a latest_revision field as a foreign key to the corresponding metadata class.

Inside this class, you also must define a PhaseConfig class the same way you would define a Meta class. This is used to configure how your document model integrates itself into Phase.

To have the full list of methods that you must implement, take a look in documents/models.py and check all methods that throw a NotImplementedError.



Document unique identifier

Every document in Phase have a unique identifier, stored in the document_key field. However, every document type must define how this field is generated.

This must be done in the generate_document_key method. Here is a example :

def generate_document_key(self):
    return slugify(
        u"{contract_number}-{originator}-{unit}-{discipline}-"
        u"{document_type}-{sequential_number}"
        .format(
            contract_number=self.contract_number,
            originator=self.originator,
            unit=self.unit,
            discipline=self.discipline,
            document_type=self.document_type,
            sequential_number=self.sequential_number
        )).upper()





The fields that you will use to build unique identifiers should also be listed in a unique_together entry in the Meta subclass.



Document list columns

In PhaseConfig, the column_fields is used to define which fields will be displayed inside columns.

column_fields = (
    ('Document Number', 'document_key', 'document_key'),
    ('Title', 'title', 'title'),
    ('Rev.', 'current_revision', 'latest_revision.revision'),
    ('Rev. Date', 'current_revision_date', 'latest_revision.revision_date'),
    ('Status', 'status', 'latest_revision.status'),
)





Each entry is composed of three elements:


	The name that will be displayed in the column header.


	The class that will be given to the column.


	The accessor to get the column value. You can use a field name or a property.






Search and filter form

In the document list, a document filter form is displayed to search and filter documents. Which field will be used is also defined in PhaseConfig.

# Here are the fields that fill appear in the filter form
filter_fields = ('leader',)

# Those fields will be searchable in the filter form
# You can use fields from the base document or the revision
searchable_fields = ('document_key', 'title')







Import fields

In PhaseConfig, the optionnal import_fields is used to define how to retrieve foreign keys
when importing documents and how to generate import templates.

import_fields = OrderedDict(('document_key', {}),
    ('title', {}),
    ('originator', {
        'model': 'accounts.Entity',
        'lookup_field': 'trigram'}),
    ('discipline', {}),
    ('document_type', {}),
    ('vd_code', {}),
    ('received_date', {}),
    ('docclass', {}),
    ('client_document_number', {}),
    ('status_idc_planned_date', {}),
    ('status_ifr_planned_date', {}),
    ('status_afc_planned_date', {}),
    # Revision fields
    ('revision', {}),
    ('status', {}),
    ('purpose_of_issue', {}),)





Simple fields like title or vd_code are populated by inserted the imported value.
For foreign key, like originator, we specifiy a dict containing the referenced model (here ‘accounts.Entity’) and
the lookup field (‘trigram’).

For revisions, the created_on field is always filled with the import date and should not belong to import_fields.





          

      

      

    

  

    
      
          
            
  
Customizing reports

Phase outgoing transmittals reorts are generated with Reportlab package.
Reports work out of the box but can be completely customized.


Company logo

A company logo can be added on the outgoing transmittals pdf
on a per organisation basis by writing logo settings in a COMPANY_LOGOS dictionnary.

COMPANY_LOGOS = {
    'COMPANY_LOGO_ABC': {'path': abc_logo_path, 'wanted_height': 30, 'x': 13,'y': 40},
    'COMPANY_LOGO_XYZ': {'path': xyz_logo_path, 'wanted_height': 30, 'x': 13, 'y': 40},
}





where ABC and XYZ are the organisations trigrams.
The logo appears on first page.
This setting must define a path to the logo image file and optionally a wanted_height, logo_x and logo_y in mm.
logo_x and logo_y define logo coordinates
The logo aspect ratio is preserved.



Report templates

There is no templating mechanism per se, but a simple class defining pdf content and layout.
The base class is transmittals.pdf.BaseTransmittalPdf.
It can be overriden by subclassing it in a module, on a per organisation basis.
Then, each custom pdf generator is referenced in PDF_CONFIGURATION settings
which will provide the dotted path to it.

PDF_CONFIGURATION = {
    'TRANSMITTALS_PDF_GENERATOR_ABC': 'import.path.to.Class_1',
    'TRANSMITTALS_PDF_GENERATOR_XYZ': 'import.path.to.Class_2',
}





where ABC and XYZ are the organisations trigrams.





          

      

      

    

  

    
      
          
            
  
Phase deployment

Phase is designed to be a lightweight alternative to traditional bloated and slow
DMS. Hence a Phase instance can be run on a single virtual machine.

A single dedicated server can host several environments (pre-production,
production).

Warning: Phase is not compatible with python 3.5.3 [because of this
issue](https://bugs.python.org/issue29519). Either upgrade or downgrade.


Hosting Phase on a dedicated server

The recommanded settings is to install Phase in an LXC container on a debian
stable (currently Stretch) host.

Also use a stretch container:

apt-get install lxc debootstrap bridge-utils







LXC configuration

The easiest way to configure the containers network is to give them public ips
(using failover ips and a bridge). For other methods, [refer to the
documentation](https://wiki.debian.org/LXC).

Configure the host network by editing /etc/network/interfaces:

# Choose ONE of the following options:

# With a DHCP config
auto br0
iface br0 inet dhcp
    bridge_ports eth0
    bridge_fd 0
    bridge_maxwait 0

# With a static config
# Check your hosting provider doc to get the exact parameters to use
auto br0
iface br0 inet static
    address xx.xx.xx.xx
    netmask xx.xx.xx.xx
    network xx.xx.xx.xx
    broadcast xx.xx.xx.xx
    gateway xx.xx.xx.xx
    bridge_ports eth0
    bridge_fd 0
    bridg_maxwait 0





Edit the file /etc/lxc/default.conf with the following content:

lxc.network.type = veth
lxc.network.link = br0
lxc.network.flags = up
lxc.network.hwaddr = 00:16:3e:xx:xx:xx





Create the container:

lxc-create -n <name> -t debian -- -a amd64 -r stretch





Edit the container network configuration in /var/lib/lxc/<name>/config:

lxc.network.type = veth
lxc.network.link = br0
lxc.network.flags = up
lxc.start.auto = 1

lxc.network.hwaddr = 00:16:3e:yy:yy:yy
lxc.network.ipv4 = yy:yy:yy:yy
lxc.network.ipv4.gateway = yy:yy:yy:yy





Note the hwaddr parameter: it’s your vm mac address. You need to get this
parameter from your hosting provider’s interface to bind your vm with a
failover ip.

The ipv4 is the ip failover you want to use, and ipv4.gateway comes from
you provider doc.

Restart the host’s network (check twice or you risk losing access to the server):

service networking restart





Start the container to check that everything is ok:

lxc-start -n <name> -d





You can check that your vm is running:

lxc-ls --fancy





Use this command to access a shell in the vm:

lxc-attach -n <name>







Server installation

Some package won’t be used and must be uninstalled:

apt-get purge apache2 apache2-doc apache2-mpm-prefork apache2-utils apache2.2-bin apache2.2-common





Some package are needed and must be installed:

apt-get update
apt-get upgrade
apt-get install build-essential libpq-dev python3-dev wget curl zlib1g-dev
apt-get install vim postgresql postgresql-contrib nginx nginx-extras git supervisor rabbitmq-server







NodeJS installation

Some tools used in Phase require a node.js installation. Get the latest
version url on the Node.js site [http://nodejs.org/dist/v0.10.25/node-v0.10.25.tar.gz].
Let’s install it:

curl -sL https://deb.nodesource.com/setup_6.x | bash -
apt-get update
apt-get install nodejs
npm install -g npm@lts







Memcache installation

Phase uses Memcached as a cache tool. To install pylibmc, the python memcached
backend, you need to install the libs first.

apt-get install memcached libmemcached-dev







Database creation

su - postgres
createuser -P phase

    Enter password for new role: phase
    Enter it again: phase

createdb --owner phase phase







Python configuration

Install pip and virtualenv (as root):

apt-get install python3-pip
pip3 install virtualenv virtualenvwrapper





Create user:

adduser phase --disabled-password
su - phase





Add those lines in the ~/.profile file:

export VIRTUALENVWRAPPER_PYTHON=`which python3`
export WORKON_HOME=~/.virtualenvs
mkdir -p $WORKON_HOME
source `which virtualenvwrapper.sh`
workon phase
export DJANGO_SETTINGS_MODULE=core.settings.production





Then:

source ~/.profile







Elasticsearch configuration

Phase uses Elasticsearch [http://www.elasticsearch.org/] to index documents
and provides search features.

You need to install java for ES to work:

apt-get install openjdk-8-jre





You can install ES by downloading the apt package on the elastic site:

wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | apt-key add -
echo "deb http://packages.elastic.co/elasticsearch/2.x/debian stable main" > /etc/apt/sources.list.d/elastic-2.x.list
apt-get install apt-transport-https
apt-get update
apt-get install elasticsearch





The default Elasticsearch installation is enough, but remember that ES listens
on 0.0.0.0 by default, which can be inconvenient.

To limit ES connections to localhost, one can update the config file
/etc/elasticsearch/elasticsearch.yml as this:

…
network.host: 127.0.0.1
…





You also need to make sure that your virtual machine has enough memory
available.

Also, make sure ES starts after boot:

update-rc.d elasticsearch defaults





Or, if your system uses systemd:

systemctl daemon-reload
systemctl enable elasticsearch.service







Phase installation

As root:

npm install -g cssmin uglify-js





As phase user:

cd
git clone https://github.com/Talengi/phase.git
cd phase/src
add2virtualenv .
pip install -r ../requirements/production.txt
export DJANGO_SETTINGS_MODULE=core.settings.production
python manage.py collectstatic
python manage.py migrate





You can load initial testing data if you need it:

python manage.py loaddata initial_accounts initial_values_lists initial_categories initial_documents







Web server configuration

If you don’t host any other site on the same server, you can replace nginx’s
default virtual host in /etc/nginx/sites-available/default:

server {
        listen 80 default_server;
        return 444;
}





Create the Phase configuration file in /etc/nginx/sites-available/phase.
Here is a working sample.

upstream phase {
    server localhost:8000;
}

server {
    server_name phase;
    access_log /var/log/nginx/phase.access.log;
    error_log /var/log/nginx/phase.error.log;

    client_max_body_size 1g;

    location /static/ {
        root   /home/thibault/code/phase/public/;
    }

    location /media/ {
        root   /home/thibault/code/phase/public/;
    }

    location /xprotected/ {
        internal;
        alias /home/thibault/code/phase/protected/;
    }

    location /xprivate/ {
        internal;
        alias /home/thibault/code/phase/private/;
    }

    location / {
        proxy_pass http://phase;
        proxy_redirect off;
        proxy_set_header Host $http_host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    }
}





Then create a link to enable it:

ln -s /etc/nginx/sites-available/phase /etc/nginx/sites-enabled/





Don’t forget to restart nginx:

/etc/init.d/nginx restart







Running the application

Gunicorn [http://gunicorn.org/] is the recommanded WSGI HTTP server to run Phase.
Supervisor [http://supervisord.org/] will be used to monitor it.

Create the /etc/supervisor/conf.d/phase.conf config file. here is a working sample.

[program:phase]
environment=DJANGO_SETTINGS_MODULE='core.settings.production'
directory=/home/phase/phase/src
command=/home/phase/.virtualenvs/phase/bin/gunicorn -b localhost:8000 core.wsgi:application
user=phase
autostart=true
autorestart=true
stdout_logfile=/var/log/supervisor/phase.log
redirect_stderr=true





Phase uses celery as a task queue. Here is the corresponding supervisor file.

[program:celery]
environment=DJANGO_SETTINGS_MODULE='core.settings.production'
directory=/home/phase/phase/src/
command=/home/phase/.virtualenvs/phase/bin/celery -A core.celery worker -l info
user=phase
numprocs=1
stdout_logfile=/var/log/celery_stdout.log
stderr_logfile=/var/log/celery_stderr.log
autostart=true
autorestart=true
startsecs=10





Run this thing with:

supervisorctl reread
supervisorctl reload







Troubleshooting


RabbitMQ won’t start after installation

If RabbitMQ fails to start after being installed, make sure the server hostname
is set in /etc/hosts. You can also check the exact hostname used by RabbitMQ
by getting the failure detail in /var/log/rabbitmq/startup_log.



No public key available

If you receive the “No public key available” upon the first apt-get update,
run the following command:

apt-get install debian-keyring debian-archive-keyring





Then proceed normally.



Missing jpeg libs for Pillow

When you pip install requirements, Pillow might fail to install with an error
related to jpeg management. To fix this, run this command as root:

apt-get install libjpeg-dev










          

      

      

    

  

    
      
          
            
  
Development and test


Installation

Check the deployment doc to see how to properly install Phase on a local
machine.



Configuration

You might need to override some local or test settings. You can create either a local_private.py or test_private.py
and add you own settings.  These files will be gitignored.





          

      

      

    

  

    
      
          
            
  
Management tasks and cronjobs


Reindex all

Documents can be reindexed so that elastic search can stay in synch with actual
document data. There is a dedicated task for it:

python manage.py reindex_all






Warning

This task will completely delete the index and recreate it from scratch.





Clear private media

Since Django 1.3, FileFields instances are not automaticaly deleted upon’s
the mode deletion anymore.

This is to preserve data integrity in case of transactions rollbacks.

The drawback is that cleaning file is our responsability.

This tasks cleans the private storage directory by removing all files that
are not present in db anymore.

python manage.py clearmedia







Exports cleanup

Exported files are kept on disk for a certain duration. There is a dedicated
task to clean old exported file.

python manage.py exports_cleanup






Warning

This task is unnecessary, since old exports are now cleaned on a new export
creation.





Crontab

Setup a crontab to run scheduled tasks regularly. You must use your phase user
to run the tasks. Here is a sample crontab file:

PYTHON="/home/phase/.virtualenvs/phase/bin/python"
DJANGO_PATH="/home/phase/phase/src/"
LOGS_PATH="/home/phase/django_logs/"
DJANGO_SETTINGS_MODULE="core.settings.production"

# m h  dom mon dow   command
# 42 0 * * * cd $DJANGO_PATH && $PYTHON manage.py reindex_all --noinput &>"$LOGS_PATH/reindex.log"
42 1 * * * cd $DJANGO_PATH && $PYTHON manage.py clearmedia  &>"$LOGS_PATH/clearmedia.log"
42 2 * * * cd $DJANGO_PATH && $PYTHON manage.py exports cleanup  &>"$LOGS_PATH/export_cleanup.log"






Warning

Make sure you create the path pointed by the $LOGS_PATH variable.







          

      

      

    

  

    
      
          
            
  
Transmittals upload

The transmittals upload feature allows a contractor to upload a bunch of
documents into a Phase instance directly from a ftp upload.


Directory definition

The directory must be named XXX

dir content



Server configuration

Here are the instructions to install and configure the ftp server to activate
this feature.

Note that Phase doesn’t care how the files are transmitted to the server (ftp,
ssh, nfs, etc.) so this section is for information only.


Ftp server installation and configuration

We will use the proftpd server to handle ftp communication, and configure the
server to only accept ftps (ftp over ssl) connexions.

First, install the proftpd ftp server:

aptitude install proftpd





Choose the “standalone” start method.

Create the ssl certificates for the TLS connection.

openssl req -x509 -newkey rsa:2048 \
     -keyout /etc/ssl/private/proftpd.key -out /etc/ssl/certs/proftpd.crt \
     -nodes -days 365
chmod 0600 /etc/ssl/private/proftpd.key
chmod 0640 /etc/ssl/private/proftpd.key





Configure the server, using those examples files as starting points.

/etc/proftpd/proftpd.conf:

# Includes DSO modules
Include /etc/proftpd/modules.conf

# Set off to disable IPv6 support which is annoying on IPv4 only boxes.
UseIPv6				off

RootLogin			off

# If set on you can experience a longer connection delay in many cases.
IdentLookups			off

ServerName			"Phase"
ServerType			standalone
DeferWelcome			off

MultilineRFC2228		on
DefaultServer			on
ShowSymlinks			on

TimeoutNoTransfer		600
TimeoutStalled			600
TimeoutIdle			1200

DisplayLogin                    welcome.msg
DisplayChdir               	.message true
ListOptions                	"-l"

DenyFilter			\*.*/

# Use this to jail all users in their homes
DefaultRoot			~

# Users require a valid shell listed in /etc/shells to login.
# Use this directive to release that constrain.
RequireValidShell		off

# Port 21 is the standard FTP port.
Port				21

# To prevent DoS attacks, set the maximum number of child processes
# to 30.  If you need to allow more than 30 concurrent connections
# at once, simply increase this value.  Note that this ONLY works
# in standalone mode, in inetd mode you should use an inetd server
# that allows you to limit maximum number of processes per service
# (such as xinetd)
MaxInstances			30

# Set the user and group that the server normally runs at.
User				proftpd
Group				nogroup

# Umask 022 is a good standard umask to prevent new files and dirs
# (second parm) from being group and world writable.
Umask				002  002

# Normally, we want files to be overwriteable.
AllowOverwrite			off

# This is required to use both PAM-based authentication and local passwords
# AuthOrder			mod_auth_pam.c* mod_auth_unix.c

TransferLog /var/log/proftpd/xferlog
SystemLog   /var/log/proftpd/proftpd.log

# In order to keep log file dates consistent after chroot, use timezone info
# from /etc/localtime.  If this is not set, and proftpd is configured to
# chroot (e.g. DefaultRoot or <Anonymous>), it will use the non-daylight
# savings timezone regardless of whether DST is in effect.
SetEnv TZ :/etc/localtime

DelayEngine on

# This is used for FTPS connections
Include /etc/proftpd/tls.conf

# List of authorized users
Include /etc/proftpd/users.conf

# Prevent files and directories rename / deletion
<Limit DELE>
DenyAll
</Limit>

<Limit RNFR>
DenyAll
</Limit>

<Limit RNTO>
DenyAll
</Limit>





/etc/proftpd/tls.conf:

TLSEngine                               on
TLSRequired                             on
TLSProtocol                             SSLv23
TLSVerifyClient                         off

TLSRSACertificateFile                   /etc/ssl/certs/proftpd.crt
TLSRSACertificateKeyFile                /etc/ssl/private/proftpd.key

TLSLog                                  /var/log/proftpd/tls.log





/etc/proftpd/users.conf:

<Limit LOGIN>
AllowUser test_ctr
DenyALL
</Limit>







User creation

Let’s create a unix user “test_ctr” for the contractor, and configure the
directory permissions.

adduser test_ctr --disabled-password --ingroup=phase --shell=/bin/false
chmod g+rwX /home/test_ctr
echo "umask 002" >> /home/test_ctr/.profile





Note that for safety reasons, the list authorized users are explicitely
declared in the /etc/proftpd/users.conf file.






          

      

      

    

  

    
      
          
            
  
Audit trail

Phase features an audit trail, i.e activity stream logging users actions.

The audit trail is loosely based on Activity Stream specification http://activitystrea.ms/specs/json/1.0/

We log:


	The actor:  the object that performed the activity (user or system)


	The verb of the action


	The action object : the object linked to the action itself


	The target: the object to which the activity was performed


	The action timestamp




Action object and target are optional
Action object, Actor and target are also denormalized in a Charfield to keep the record even
if related objects are deleted.


Actions logged

Currently, actions logged are defined in audit_trail.models.Activity:

VERB_CREATED = 'created'
VERB_EDITED = 'edited'
VERB_DELETED = 'deleted'
VERB_JOINED = 'joined'
VERB_STARTED_REVIEW = 'started_review'
VERB_CANCELLED_REVIEW = 'cancelled_review'
VERB_REVIEWED = 'reviewed'
VERB_CLOSED_REVIEWER_STEP = 'closed_reviewer_step'
VERB_CLOSED_LEADER_STEP = 'closed_leader_step'
VERB_CLOSED_APPROVER_STEP = 'closed_approver_step'
VERB_SENT_BACK_TO_LEADER_STEP = 'sent_back_to_leader_step'





A signal is defined in audit_trail.signals and sent in relevant part of the application.



For admins

The audit trail displaying all users activities is accessible in django admin interface for
admin users.



For other users

User having documents.can_control_document permission can access the document audit trail by the action dropdown menu.





          

      

      

    

  

    
      
          
            
  
Django administration

Superusers can access django admin interface.


Reports

Reports access and appearance in sidebar menu can be controlled by checking
“display report section” in category template.



Contractors and outgoing transmittals

Third party users (contractor not belonging to main organisation) can receive a
limited access to Phase in order to
get outgoing tranmsmittals.

First, contractors users have to be created.
The category user relationships must contains a link to the
relevant Outgoing transmittal category.
Then a contractor entity must be created (Contractor Type).
Then, users have to be added to Entity users field.





          

      

      

    

  

    
      
          
            
  
Colophon

This documentation is generated by sphinx, please edit docs/index.rst to add more content and use the fab docs command to compile it.


	Django: https://www.djangoproject.com/


	Bootstrap: http://twitter.github.io/bootstrap/


	Two Scoops of Django template: https://django.2scoops.org/


	Sphinx: http://sphinx-doc.org/


	Datepicker for Bootstrap: http://www.eyecon.ro/bootstrap-datepicker/


	File upload for Bootstrap: http://jasny.github.io/bootstrap/javascript.html#fileupload


	jQuery UI MultiSelect Widget: http://www.erichynds.com/blog/jquery-ui-multiselect-widget


	yuglify: https://github.com/yui/yuglify/







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Phase’s documentation!
        


        		
          Getting started
          
            		
              Introduction
            


            		
              Installation
            


            		
              Contributing
            


            		
              Available fabric commands
            


          


        


        		
          Basic usage
          
            		
              Users Group
            


          


        


        		
          Customizing document models
          
            		
              Document model definition
            


            		
              Required fields and methods
            


            		
              Document unique identifier
            


            		
              Document list columns
            


            		
              Search and filter form
            


            		
              Import fields
            


          


        


        		
          Customizing reports
          
            		
              Company logo
            


            		
              Report templates
            


          


        


        		
          Phase deployment
          
            		
              Hosting Phase on a dedicated server
            


            		
              LXC configuration
            


            		
              Server installation
            


            		
              NodeJS installation
            


            		
              Memcache installation
            


            		
              Database creation
            


            		
              Python configuration
            


            		
              Elasticsearch configuration
            


            		
              Phase installation
            


            		
              Web server configuration
            


            		
              Running the application
            


            		
              Troubleshooting
              
                		
                  RabbitMQ won’t start after installation
                


                		
                  No public key available
                


                		
                  Missing jpeg libs for Pillow
                


              


            


          


        


        		
          Development and test
          
            		
              Installation
            


            		
              Configuration
            


          


        


        		
          Management tasks and cronjobs
          
            		
              Reindex all
            


            		
              Clear private media
            


            		
              Exports cleanup
            


            		
              Crontab
            


          


        


        		
          Transmittals upload
          
            		
              Directory definition
            


            		
              Server configuration
              
                		
                  Ftp server installation and configuration
                


                		
                  User creation
                


              


            


          


        


        		
          Audit trail
          
            		
              Actions logged
            


            		
              For admins
            


            		
              For other users
            


          


        


        		
          Django administration
          
            		
              Reports
            


            		
              Contractors and outgoing transmittals
            


          


        


        		
          Colophon
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





